虚拟试验旨在在店内服装和参考人员图像的情况下产生光真实的拟合结果。现有的方法通常建立多阶段框架来分别处理衣服翘曲和身体混合,或严重依赖基于中间解析器的标签,这些标签可能嘈杂甚至不准确。为了解决上述挑战,我们通过开发一种新型的变形注意流(DAFLOF)提出了一个单阶段的尝试框架,该框架将可变形的注意方案应用于多流量估计。仅将姿势关键点作为指导,分别为参考人员和服装图像估计了自我和跨跨性别的注意力流。通过对多个流场进行采样,通过注意机制同时提取并合并了来自不同语义区域的特征级和像素级信息。它使衣服翘曲和身体合成,同时以端到端的方式导致照片真实的结果。在两个尝试数据集上进行的广泛实验表明,我们提出的方法在定性和定量上都能达到最先进的性能。此外,其他两个图像编辑任务上的其他实验说明了我们用于多视图合成和图像动画方法的多功能性。
translated by 谷歌翻译
跨域冷启动推荐是推荐系统越来越新兴的问题。现有的作品主要专注于解决跨域用户推荐或冷启动内容推荐。但是,当新域在早期发展时,它具有类似于源域的潜在用户,但互动较少。从源域中学习用户的偏好并将其转移到目标域中是至关重要的,特别是在具有有限用户反馈的新到达内容上。为了弥合这一差距,我们提出了一个自训练的跨域用户偏好学习(夫妻)框架,针对具有各种语义标签的冷启动推荐,例如视频的项目或视频类型。更具体地,我们考虑三个级别的偏好,包括用户历史,用户内容和用户组提供可靠的推荐。利用由域感知顺序模型表示的用户历史,将频率编码器应用于用于用户内容偏好学习的底层标记。然后,建议具有正交节点表示的分层存储器树以进一步概括域域的用户组偏好。整个框架以一种对比的方式更新,以先进先出(FIFO)队列获得更具独特的表示。两个数据集的广泛实验展示了用户和内容冷启动情况的夫妇效率。通过部署在线A / B一周测试,我们表明夫妇的点击率(CTR)优于淘宝应用程序的其他基线。现在该方法在线为跨域冷微视频推荐服务。
translated by 谷歌翻译
Nonconvex minimax problems have attracted wide attention in machine learning, signal processing and many other fields in recent years. In this paper, we propose a primal dual alternating proximal gradient (PDAPG) algorithm and a primal dual proximal gradient (PDPG-L) algorithm for solving nonsmooth nonconvex-strongly concave and nonconvex-linear minimax problems with coupled linear constraints, respectively. The corresponding iteration complexity of the two algorithms are proved to be $\mathcal{O}\left( \varepsilon ^{-2} \right)$ and $\mathcal{O}\left( \varepsilon ^{-3} \right)$ to reach an $\varepsilon$-stationary point, respectively. To our knowledge, they are the first two algorithms with iteration complexity guarantee for solving the two classes of minimax problems.
translated by 谷歌翻译
我们研究了离线模仿学习(IL)的问题,在该问题中,代理商旨在学习最佳的专家行为政策,而无需其他在线环境互动。取而代之的是,该代理来自次优行为的补充离线数据集。解决此问题的先前工作要么要求专家数据占据离线数据集的大部分比例,要么需要学习奖励功能并在以后执行离线加强学习(RL)。在本文中,我们旨在解决问题,而无需进行奖励学习和离线RL培训的其他步骤,当时示范包含大量次优数据。基于行为克隆(BC),我们引入了一个额外的歧视者,以区分专家和非专家数据。我们提出了一个合作框架,以增强这两个任务的学习,基于此框架,我们设计了一种新的IL算法,其中歧视者的输出是BC损失的权重。实验结果表明,与基线算法相比,我们提出的算法可获得更高的回报和更快的训练速度。
translated by 谷歌翻译
最近,由于这些问题与一些新兴应用的相关性,最近有许多研究工作用于开发有效算法,以解决理论收敛的保证。在本文中,我们提出了一种统一的单环交替梯度投影(AGP)算法,用于求解平滑的非convex-(强烈)凹面和(强烈)凸出 - 非concave minimax问题。 AGP采用简单的梯度投影步骤来更新每次迭代时的原始变量和双变量。我们表明,它可以在$ \ MATHCAL {O} \ left(\ Varepsilon ^{ - 2} \ right)$(rep. $ \ Mathcal {O} \ left)中找到目标函数的$ \ VAREPSILON $ -STAIMATARY点。 (\ varepsilon ^{ - 4} \ right)$)$迭代,在nonconvex-strongly凹面(resp。nonconvex-concave)设置下。此外,获得目标函数的$ \ VAREPSILON $ -STAIMATARY的梯度复杂性由$ \ Mathcal {o} \ left(\ varepsilon ^{ - 2} \ right)界限O} \ left(\ varepsilon ^{ - 4} \ right)$在强烈的convex-nonconcave(resp。,convex-nonconcave)设置下。据我们所知,这是第一次开发出一种简单而统一的单环算法来解决非convex-(强烈)凹面和(强烈)凸出 - 非concave minimax问题。此外,在文献中从未获得过解决后者(强烈)凸线 - 非孔孔的最小问题的复杂性结果。数值结果表明所提出的AGP算法的效率。此外,我们通过提出块交替近端梯度(BAPG)算法来扩展AGP算法,以求解更通用的多块非块非conmooth nonmooth nonmooth noncovex-(强)凹面和(强烈)convex-nonconcave minimax问题。我们可以在这四个不同的设置下类似地建立所提出算法的梯度复杂性。
translated by 谷歌翻译
我们详细介绍了一种开发Stein方法的方法,该方法是针对Riemannian歧管$ \ Mathbf M $界定的概率度量界定整体指标的。我们的方法利用了$ \ mathbf m $扩散的生成器与目标不变度度量及其表征Stein运算符之间的关系。我们考虑了一对具有不同起点的扩散,并通过对两对之间的距离过程进行分析,得出了Stein因子,该因子将解决方案绑定到Stein方程及其衍生物。Stein因子包含曲率依赖性的术语,并减少到当前可用于$ \ Mathbb r^m $的因子,此外,暗示$ \ Mathbb r^m $的界限在$ \ Mathbf M $时保持有效
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Text clustering and topic extraction are two important tasks in text mining. Usually, these two tasks are performed separately. For topic extraction to facilitate clustering, we can first project texts into a topic space and then perform a clustering algorithm to obtain clusters. To promote topic extraction by clustering, we can first obtain clusters with a clustering algorithm and then extract cluster-specific topics. However, this naive strategy ignores the fact that text clustering and topic extraction are strongly correlated and follow a chicken-and-egg relationship. Performing them separately fails to make them mutually benefit each other to achieve the best overall performance. In this paper, we propose an unsupervised text clustering and topic extraction framework (ClusTop) which integrates text clustering and topic extraction into a unified framework and can achieve high-quality clustering result and extract topics from each cluster simultaneously. Our framework includes four components: enhanced language model training, dimensionality reduction, clustering and topic extraction, where the enhanced language model can be viewed as a bridge between clustering and topic extraction. On one hand, it provides text embeddings with a strong cluster structure which facilitates effective text clustering; on the other hand, it pays high attention on the topic related words for topic extraction because of its self-attention architecture. Moreover, the training of enhanced language model is unsupervised. Experiments on two datasets demonstrate the effectiveness of our framework and provide benchmarks for different model combinations in this framework.
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译